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Abstract

A short account is given of the BCM theory of synaptic plasticity: assumptions, conse-
quences, comparison with experiment and statistical properties. In addition a framework for
comparison with other theoretical ideas is presented.

1 Introduction

Because of its great complexity, visual cortex would not seem to be an auspicious region of the
brain to carry out an investigation of synaptic plasticity or of the mechanisms and sites of memory
storage. It is, in addition, almost certain that much of the architecture of visual cortex is prepro-
grammed genetically, leaving a relatively minor percentage to be shaped or modified by experience.
However the fact that visual cortex is accessible to single-cell electrophysiology, so that the output
of individual cells can be measured, whereas the inputs can be controlled by varying the visual ex-
perience of the animal has made this a preferred area for experimentation and analysis. Thus over
the past 30 years, a great deal of experimental and theoretical work has been done, to investigate
the responses of visual cortical cells, as well as the alterations in these responses under various
visual rearing conditions.

It is widely believed that much of the learning and resulting organization of visual cortex as well
as other parts of the central nervous system occurs due to modification of the efficacy or strength
of at least some of the synaptic junctions between neurons, thus altering the relation between
presynaptic and postsynaptic potentials. The vast amount of experimental work done in visual
cortex - particularly area 17 of cat and monkey - strongly indicates that one is observing a process
of synaptic modification dependent on the information locally and globally available to the cortical
cells. Furthermore, it is known that small but coherent modifications of large numbers of synaptic
junctions can result in distributed memories. Whether and how such synaptic modification occurs,
what precise forms it takes, and what the physiological and/or anatomical bases of this modification
are, among the most interesting questions in this area. There is no need to assume that such
mechanisms operate in exactly the same manner in all portions of the nervous system or in all
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animals. However, one would hope that certain fundamental similarities exist so that a detailed
analysis of the properties of these mechanisms in one preparation would lead to some conclusions
that are generally applicable.

It is our hope that such a general form of modifiability manifests itself for at least some cells of
visual cortex that are accessible to experiment. If so, one then may be able to distinguish between
different cortical plasticity theories with theoretical tools and the aid of sophisticated experimental
paradigms. Among the difficulties faced by theoreticians are (1) adequate representation of the
visual environment; (2) knowledge of what the actual inputs to cortical cells are; (3) the appropriate
rule for synaptic modification; and (4) an adequate representation of the-complex architecture of
visual cortex.

In this article, we give a brief overview of the BCM theory of visual cortical plasticity that
has been developed over the past ten years, address the difficulties mentioned above and compare
the consequences of the theory with experiment. We discuss recent physiological experiments that
seem to provide verification of some of the underlying assumptions of the theory, and finally, we
initiate a comparison of the BCM theory with other theories that have been proposed. We assume
that the reader has some familiarity with experiments demonstrating plasticity in visual cortex. A
brief review may be found in Clothiaux et al., 1991.

2 BCM Theory

In what follows we give a brief overview of the BCM theory of synaptic plasticity. For a more
detailed account the reader is referred to the various references cited below.

2.1 Single Cell

A typical neuron in striate cortex receives thousands of afferents from other cells. Most of these
afferents derive from the lateral geniculate nucleus (LGN) and from other cortical neurons. We have
approached the analysis of this complex network in several stages. In the first stage we consider a
single neuron with inputs from both eyes (i.e., LGN) but without intracortical interactions.

The output of this neuron (in the linear region) can be written

c = mI. dI + Mrd",

where d' (dr) are the LGN inputs coming from the left (right) eye to the vector of synaptic junctions
mn (mW). The neuron firing rate (in the linear region) is therefore the sum of the inputs from the
left eye multiplied by the appropriate left-eye synaptic weights plus the inputs from the right
eye multiplied by the appropriate right-eye synaptic weights. Thus the neuron integrates signals
from the left and right eyes. (For simplicity, whenever possible we shall omit the left and right
superscripts.) According to the theory presented by Bienenstock, Cooper and Munro (BCM, 1982),
the synaptic weight changes over time as a function of local and global variables: its change in time,
rhi, is given below:

Thi = F( di,..., mi; dA:, . . . , c; C=; X, Y, Z).

Here variables such as di,..., mn are designated local. These represent information (such as the
incoming signal, dj, and the strength of the synaptic junction, mi) available locally at the synaptic
junction, ini. Variables such as dk,...,c are designated quasi-local. These represent information
(such as c, the firing rate of the postsynaptic cell, or dk, the incoming signal to another synaptic
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junction) that is not locally available to the junction mi but is physically connected to the junction
by the cell body itself-thus necessitating some form of internal communication between various
parts of the cell and its synaptic junctions. Variables such as c (the time averaged output of the
cell) are averaged local or quasi-local variables. Global variables are designated X, Y, Z,.... These
latter represent information (e.g. presence or absence of neurotransmitters such as norepinephrine
or the average activity of large numbers of cortical cells) that is present in a similar fashion for all
or a large number of cortical neurons (distinguished from local or quasi-local variables presumably
carrying detailed information that varies from synapse to synapse or cell to cell). Neglecting global
variables, one arrives at the following form of synaptic modification equation:

mj = 0(c, Om)dj (2.1)

so that the jh synaptic junction, mj, changes its value in time as the product of the input activity
(the local variable dj) and a function 46 of quasi-local and time-averaged quasi-local variables, c and
E,,. 0 ,m is a nonlinear function of some time averaged measure of cell activity that in the original
BCM formulation was proposed as

= (=)2. (2.2)

In BCM, this time average is replaced, for simplicity, by a spatial average over the environmental
inputs (P - m. d). The shape of the function € is given in Figure 2 for two different values of the
threshold 0em. The occurrence of negative and positive regions for 0 results in the cell becoming
selectively responsive to subsets of stimuli in the visual environment. This happens because the
response of the cell is diminished to those patterns for which the output, c, is below threshold
(0 negative) while the response is enhanced to those patterns for which the output, c, is above
threshold (0 positive). The non-linear variation of the threshold 0.. with the average output of
the cell contributes to the development of selectivity and the stability of the system (Bienenstock
et al., 1982; Intrator and Cooper, 1992).

2.2 Cortical Network: Mean Field Theory

The actual cortical network is very complex. It includes different cell types, intracortical interac-
tions, and recurrent collaterals. In what follows we present a method of analyzing this complex
system. The first step is to divide the inputs to any cell into those from the LGN and those from
all other sources. The activity of neuron i is affected by its input vector d from the LGN, and by
the adjacent cortical neurons;

ci = mi"- d + _ Lic,, (2.3)

where Lij are the cortico-cortical synapses. Scofield and Cooper (1985, 1988) have analyzed a
network extension of the single cell theory and a mean field approximation to the full network.
Defining Z = ci, where N is the number of neurons in the network, the mean field approxi-
mation is obtained by replacing the inhibitory contribution of cell j, cj by its average value so that
ci becomes:

ci = mi.- d + EE Lii. (2.4)
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From a consistency condition it follows that Z = r. d + ZL0 = (1 - Lo)-'h -d, where fhi -k Eji mi,
and L0 = - Eik Lij, so that ci = (ri + (1 - Lo)'- 1f j Lij)d.

If we assume that the lateral connection strengths are a function only of the relative distance
i - j, then Lij becomes a circular matrix so that ,i Lij = 'j Lij = L0 , and

ci = (mi + Lo(1 - Lo)-lf)d. (2.5)

In the mean field approximation, one can therefore write ci(a) = (mi - a)d, with a = ILO0(1 +
ILol)-IY .

When analyzing the position and stability of the fixed points using this approximation, it
follows under some mild assumption on the evolution of the average synaptic weights, that there is
a mapping

mi + m i (a) - a

such that for every neuron in such a network with synaptic weight vector mi there is a corresponding
neuron with weight vector mn that undergoes the same evolution (around the fixed points) subject
to a translation a.

Although the averaged inhibition assumption used in the mean-field theory is an approximation,
the mean field network described above provides a powerful tool to analyze a certain type of network
architecture in great detail, and to gain an intuitive understanding of a complex network in terms
of the behavior of a single neuron.

2.3 Synapses with Varying Modifiability

In the equations above, all synapses are taken to be modifiable in the same way. However, the
behavior of visual cortical cells in various rearing conditions suggests that some cells respond more
rapidly to environmental changes than others. In monocular deprivation, for example, some cells
remain responsive to the closed eye in spite of the very large shift of most cells to the open eye.
Hubel and Wiesel (1959) and Singer (1977) , found, using intracellular recording, that geniculo-
cortical synapses on inhibitory interneurons are more resistant to monocular deprivation than are
synapses on pyramidal cell dendrites. These results suggest that some LGN-cortical synapses mod-
ify rapidly, while others modify relatively slowly, with slow modification of some cortico-cortical
synapses. Excitatory LGN-cortical synapses onto excitatory cells may be those that modify pri-
marily. Since these synapses are formed exclusively on dendritic spines, this raises the possibility
that the mechanisms underlying synaptic modification exist primarily in axo-spinous synapses. To
embody these facts we introduce two types of LGN-cortical synapses: those (mi) that modify ac-
cording to the modification rule discussed in BCM and those (zk) that remain relatively constant. In
a cortical network with modifiable and non- modifiable LGN-cortical synapses, and non-modifiable
cortico-cortical synapses Lii, the synaptic evolution equations become

rhi = €(ci, 0-,.')d,
zk = 0,

Lij = 0. (2.6)

As will be discussed below, such a network is capable of explaining the variety of experiments
considered.
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3 BCM and the Neurobiology of Synaptic Modification

The BCM theory and its recent extensions originated as an attempt to account for the varied
consequences of different visual environments on the developing visual cortex. In cats, the circuitry
of the visual cortex can be modified by simple manipulations of visual experience during a "critical
period" in the first few months of postnatal development. For example, one such manipulation,
monocular deprivation, leads to a disconnection of the inputs from the deprived eye which renders
the animal behaviorally blind through that eye. The goal of the BCM theory is to develop a model
of synaptic modification which accounts for those striking changes in visual cortex that result from
alterations in the patterns and amount of activity arising at the two retinae. While the theory
aims to provide a physiologically-plausible account of synaptic plasticity, it does not address the
mechanism by which plasticity diminishes at the end of the critical period. A number of possible
mechanisms have been proposed to account for the short duration of the plastic period but at
present it is not clear that the length of the critical period is determined by the same mechanism
as that underlying synaptic change.

The validity of the BCM theory, as with any theory, can be tested in two ways. The first is
to derive predictions or consequences of the theory in various situations that can be compared
with experimental results. There is a considerable experimental literature on visual cortical plas-
ticity reaching back 30 years which facilitates such comparisons with the BCM theory. The second
approach is to attempt to verify the underlying assumptions of the theory, particularly those as-
sumptions that distinguish it from others. In the case of BCM the most important and unique
assumptions concern the form of the synaptic modification function € and the movement of the
modification threshold. Over the last five years we have made significant progress using both of
these approaches, and this work is summarized briefly below.

3.1 Comparison of Theory and Experiment

In work recently published by Eugene Clothiaux and colleagues (Clothiaux et al., 1991) the conse-
quences of the BCM theory were compared in detail with the results of experiments on what were
called "classical" rearing conditions. These conditions include normal binocular vision, monocular
deprivation, reverse suture, strabismus, binocular deprivation, as well as the restoration of normal
binocular vision after various forms of deprivation. Comparisons with the pharmacological manipu-
lations that affect visual cortical plasticity (e.g. Greuel et al., 1987; Reiter and Stryker, 1988; Bear
et al., 1990) were not considered and remain an area that is ripe for further work. The modifica-
tions considered by Clothiaux et al. were those that occur in kitten visual cortex during the second
postnatal month after brief (_ 2 weeks) changes in visual experience. Particular attention was
given to the manner in which the theory predicts that changes in visual experience should affect
the binocularity of cortical neurons and the selectivity of these neurons for the stimulus pattern
(eg. its orientation). It is these properties of binocularity and selectivity which distinguish cortical
neurons from those in the retina and thalamus. A review of the experimental literature as it relates
to the modification of these properties may be found in Clothiaux et al. (1991).

All theories of visual cortical plasticity have to make some assumption as to how the initial
visual scenes are converted into LGN firing rates and how this information reaches visual cortex.
We wish to model the input to visual cortex that arises from the regions of the two retinae that
view the same point in visual space. For simplicity, Clothiaux et al. assumed that LGN activity is a
direct reflection of retinal ganglion cell activity. Two types of LGN-cortical input were modeled: (1)
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activity elicited when visual contours are presented to the retinae, which we call "pattern" input;

and (2) activity that arises in the absence of visual contours, which we call "noise". From our
point of view the important distinction between pattern and noise input is the degree of correlation
that the two types of input produce in the LGN. For a specific input "pattern" the activity of
one LGN neuron is assumed to have a predictable relationship (i.e. correlation) to the activity of
other LGN neurons, while for "noise" the activity of one LGN neuron is independent of the activity
of the other LGN neurons1 . Differences between distinct patterns (for example, between various
stimulus orientations) are reflected by the differences in their distribution of activity across the
LGN. Using this type of pattern input distorted by noise, and noise alone, Clothiaux et al. were
able to reproduce both the outcome and kinetics of synaptic change in visual cortex resulting from
normal visual experience and a wide variety of visual deprivation conditions.

As one example of the quantitative nature of these results, consider the simulation of the effects
of monocular deprivation (Figure 7, Clothiaux et al., 1991). Beginning from a state in which
the simulated neuron is binocularly responsive and selective, substituting pattern input through
one eye with noise leads to a rapid synaptic disconnection of the "deprived" eye. Mathematical
analysis provides a complete account of the factors on which this result depends if it is governed
by the principles of the BCM theory. For example, for this result to be obtained using BCM it
is necessary that the neuron be selective (i.e. that it responds vigorously only to a fraction of
the patterns that are presented to the "open eye") before the ocular dominance changes, and that
the deprived eye inputs carry noise (i.e. that they be active). The prediction that the ocular
dominance shift depends on neuronal selectivity was tested by Paradiso and colleagues (Raamoa et
al., 1988). They found that cortical infusion of the GABA receptor antagonist bicuculline, which
greatly reduces orientation selectivity in visual cortex, eliminates the ocular dominance shift that
normally results from monocular deprivation. The second prediction that the disconnection of the
deprived eye depends on noise has never been tested explicitly, but there are some indications that
it is also correct. For example, clinical observations in humans led Jampolsky (1978) to conclude

that the effects of monocular diffusion (resulting from lid suture) are more severe than the effects
of monocular occlusion (resulting from an opaque eye-patch or contact lens).

To determine the time equivalence of each iteration for the parameters used, the behavior
of the model under monocular deprivation can be compared to the results of the corresponding
experiment. Equivalence was established between the number of computer iterations and the
duration of deprivation required for complete disconnection of the deprived eye (Clothiaux et al.
1991). Thus, using a fixed set of parameters, one has a direct correspondence between the temporal
dynamics of synaptic change in the theory and experiments. This can be used to analyze and
compare kinetics and outcome of theory and experiment for other manipulations. For example,
in "reverse suture", the deprived eye is opened and the open eye is closed after a period of initial
monocular deprivation. Experimentally, it is observed that the newly closed eye shows a greatly

reduced response in about 24 hours, but that the recovery of the response to the newly open eye
generally does not begin for another 1-2 days (Mioche and Singer, 1989). The same difference
in the time required to obtain the initial effect and the reversal is seen with the model. The
correspondence of theory and experiment is thus very close. The theoretical explanation for this
result is that recovery requires that the modification threshold slide nearly to zero and, using the
same parameters that were fixed for monocular deprivation, this requires approximately 24 hours.

'Addition of local correlations such as those suggested by the work of Mastronarde (1989) does not alter the
results.
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Similar comparisons for the other experimental manipulations are discussed in detail in Clothiaux
et al. (1991). We conclude that when the predictions of the theory have been tested they are in
good agreement with what is seen experimentally.

3.2 Neurobiological Foundations for the Assumptions of the BCM Theory

Recent advances in our understanding of excitatory amino acid (EAA) receptors have suggested a
possible physiological basis of the BCM form of synaptic modification. In 1987, Bear et al. pro-
posed that the modification threshold 0,,, of BCM related to the membrane potential at which the
N-methyl-D-aspartate (NMDA) receptor dependent Ca 2+ flux reached the threshold for inducing
synaptic long-term potentiation (LTP). In support of the hypothesis that NMDA receptor mecha-
nisms play a role in synaptic plasticity, Bear and co-workers have found that the pharmacological
blockade of NMDA receptors with the competitive antagonist AP5 disrupts the physiological (Klein-
schmidt et al., 1987; Bear et al., 1990) and anatomical (Bear and Colman, 1990) consequences of
monocular deprivation in striate cortex. Although the interpretation of these experiments is com-
promised by the finding that AP5 reduces visually evoked responses (Fox et al., 1989), the data
indicate that activity evoked in visual cortex in the absence of NMDA receptor activation is not
sufficient to produce loss of closed-eye responsiveness in MD.

In the past several years our work has been focused on the synaptic plasticity that can be

evoked in brain slices to better investigate the assumptions of the BCM theory and to address
possible underlying mechanisms (Connors and Bear, 1988; Press and Bear, 1990; Bear et al., 1992;
Dudek and Bear, 1992; Kirkwood et al., 1992). Hippocampus, particularly CAl and dentate gyrus,
is an advantageous preparation because robust and lbng-lasting experience-dependent synaptic
modifications can be evoked in this structure. Serena Dudek in Bear's lab (1992) recently tested
a theoretical prediction that patterns of excitatory input activity that consistently fail to activate
target neurons sufficiently to induce synaptic potentiation will instead cause a specific synaptic
depression. To realize this situation experimentally, the Schaffer collateral projection to CA1 in rat
hippocampal slices was stimulated electrically at frequencies ranging from 0.5 to 50 Hz. 900 pulses
at 1-3 Hz consistently yielded a depression of the CA1 population EPSP that persisted without
signs of recovery for > 1 hour following cessation of the conditioning stimulation. This long-term
depression was specific to the conditioned input and could be prevented by application of NMDA
receptor antagonists. This result was surprising in that NMDA receptors are known to participate

in the induction of long-term potentiation, an increase in synaptic effectiveness. Indeed, at higher

stimulation frequencies the depression was replaced by a potentiation. If the effects of varying
stimulation frequency in the experiments of Dudek and Bear are explained by different values of
postsynaptic response (perhaps the integrated postsynaptic depolarization or Ca2+ level) during
the conditioning stimulation, then it can be seen from Figure 3 that their data are in striking
agreement with assumptions of the BCM theory.

Of course, as striking as this similarity is, Dudek's work was performed in hippocampus and
the BCM theory was developed for visual cortex. And, although these two forms of synaptic
plasticity (depression and potentiation) have been reported in the sensory neocortex (cf. Artola
et al., 1990), evidence to date has indicated that they occur with far lower probability, usually
require pharmacological treatments for their induction, and are elicited by stimulation patterns
that differ dramatically from those that are effective in hippocampus (see discussion in Bear et al.,
1992). Together, these data have been taken as support for the view that hippocampus and sensory
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neocortex may be quite distinct with respect to their capability for synaptic change. However, a
direct comparison of plasticity of synaptic responses evoked in adult rat hippocampal field CAl
with those evoked in adult rat and immature cat visual cortical layer III has now been carried out
by Alfredo Kirkwood and colleagues in Bear's lab (1992). In the neocortical preparations they have
stimulated the direct input to layer III from layer IV rather than using the traditional approach
of stimulating the white matter, and find, contrary to the prevailing view, that very similar forms
of plasticity, LTP and LTD, are evoked with precisely the same types of stimulation in the three
types of cortex without the use of pharmacological treatments. Further, in all three preparations,
both LTP and LTD depend on activation of NMDA receptors. These data suggest, first, that
hippocampus should not be considered as a privileged site for plasticity in the adult brain and,
second, that a common principle may govern experience-dependent synaptic plasticity, both in
CA1 and throughout the superficial layers of the neocortex. We believe that this work represents
an important advance towards a general theory of experience-dependent synaptic plasticity in the
mammalian brain.

It is our opinion that in its entirety this work gives strong justification for a form of modification
similar to that assumed by BCM. However, still open is the question of the sliding modification
threshold. Although more work remains to be done on this question, we note that two recent
studies have shown that the sign and magnitude of a synaptic modification in both hippocampus
(Huang et al., 1992) and the Mauthner cell of goldfish (Yang and Faber, 1991) have been shown to
depend on the recent history of synaptic activation.

4 Reformulation and Extensions of the BCM Theory

In order to compare the BCM theory with other theories of synaptic plasticity as well as to exhibit
its information processing and statistical properties, the following formulation proves convenient.

4.1 Objective function formulation

In a recent statistical formulation of the BCM theory (Intrator and Cooper, 1992), the threshold
0, was defined' as

S= E[(x m)2 ],

and an energy function that corresponds to a risk function in statistical decision theory was pie-
sented:

= -A 1 {3E[(z . m)'] - 1 E2[(x . m)']}. (4.1)

It was shown that the differential equations describing synaptic weight modification are a stochastic
approximation of the negative gradient of the risk, hence tending to minimize this risk (Intrator
and Cooper, 1992, for review). This formulation permits us to demonstrate the connection between
the unsupervised BCM learning procedure and various statistical methods, in particular, that of
Exploratory Projection Pursuit (Friedman, 1987). It also provides a general method for stability
analysis of the fixed points of the theory and enables us to analyze the behavior and the evolution
of the network under various visual rearing conditions. In the next few sections we shall use this

2Ta use the same notation as in Intrator and Cooper (1992), we denote the input as the vector 7. This is equivalent
to d used above.
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formulation to extend the theory to nonlinear neurons, and consequently to a network of feedforward
inhibitory neurons.

4.2 Nonlinear Neurons

From statistical considerations that are motivated by the projection pursuit ideas, it is more effective
to consider a nonlinear neuron that is less sensitive to possible outliers in the data. This is done
by defining the neuron's activity as c = a(i-m), where a usually represents a smooth sigmoidal
function. It is also desirable to have the ability to shift the projected distribution (of the input
data) so that one of its peaks is at zero, by introducing a threshold 13 so that the projection is
defined to be c = a(x • m + /0). From the biological viewpoint, 1 can be considered as spontaneous
activity. The modification equations for finding the optimal threshold 63 are easily obtained by
observing that this threshold effectively adds one dimension to the input vector and the vector of
synaptic weights so that x = (z1 ... , x,, 1), iM = (in,..., 0,,, 13), and therefore, # can be found
by using the same synaptic modification equations. For the rest of the paper we shall assume that
this threshold is added to the projection, without specifically writing it.

For the nonlinear neuron, O, is defined to be 0 m = E[a2 (x i m)]. The gradient of the risk
becomes:

-VmRm =/, E[ (a (x- in), 0m)', )-], (4.2)

where a' represents the derivative of a at the point (x • m). Note that the multiplication by a'
reduces sensitivity to outliers of the differential equation since for outliers a' is close to zero. The
gradient decent procedure is valid, provided that the risk is bounded from below (cf. Intrator and
Cooper, 1992).

4.3 Networks with Feed-Forward Inhibition: Application to Classification

Intrator and Cooper (1992) have extended the single cell theory to a feed forward inhibition network
which does not require the mean field approximation; nor does it require that the cortico-cortical
synapses Lij be constant. Thus it is possible to study networks with varying amounts of excitation
and inhibition.

The activity of neuron k in the network is ck = i •nk, where Mk is the synaptic weight vector
of neuron k. The inhibited activity and threshold of the k'th neuron are given by

EA = cA - 77E ci, 6 = E[22]. (4.3)
jok

The relation between the feed forward inhibition network and the mean field network is discussed
in Intrator and Cooper (1992).

For the feed-forward network the risk for node k is given by:

3 1 E 2[r21}, (4.4)

and the total risk is given by

N
R =ER. (4.5)

k=1
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It follows that the gradient of R becomes:

OR aRk R RJ
O =mk -l, -Omj

= t [E[O(E, ' )jx - 77 E[O(Zj, E•)xJl. (4.6)
j~k

The equation performs a constraint minimization in which the derivative with regard to one

neuron can become orthogonal (when 77 --# 1) to the sum over the derivatives of all other synaptic
weights. Nevertheless, the coupling between the neurons is very simple to calculate and does not

require any matrix inversion. Equation 4.6 therefore, allows a simple computational algorithm that

performs exploratory projection pursuit of several projections in parallel.
When the nonlinearity of the neuron is included, the inhibited activity is defined (as in the

single neuron case) as Zk = o(ck - 77 Z1•k c). 0, and Rk are defined as before. However, in this

case

m= -7a ?'(Ck)X, m& = a'(4)z. (4.7)

Therefore the total gradient becomes:

R- = {E[O(Ek, )a)'(Zk)x] - 77 E[Z(Z, 6 )o'(Z)J}- (4.8)

This biologically motivated system of equations has many desirable statistical properties and has

been applied to various non-trivial feature extraction tasks such as phoneme recognition (Intrator,
1992) and 3D object recognition (Intrator and Gold, 1993).

5 Comparison of BCM with Other Visual Cortical Plasticity
Theories

In order to compare ideas concerning visual cortical plasticity, it is important to analyze separately

the different components that make up a theory, and to compare theories feature by feature. We

consider a theory as being composed of the following three components:

"* Synaptic modification equations.

"* Model of the input environment.

"* Network architecture.

In some cases, there are interactions between these components that are not explicitly defined.

For example, several theories are said to have the property of being able to develop orientation

selectivity prenataly, i.e., using random noise as an input environment (Linsker, 1986; Miller et al.,

1989). However, under closer examination, it turns out that they have architectual constraints that

actually yield very different input environments. Inputs to the network become strongly locally

correlated after the first layer due only to network architecture (the arborization function). The

arborization function determines the density of synapses as a function of planar distance from their

target cell. This correlated input can then drive the higher level of cells to develop orientation

selective cells. When the arborization function is uniform, all the weights of all layers will become

positively saturated thus no selectivity will develop.
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5.1 Comparison Based on Synaptic Modification Equations

In order to examine the effect of the synaptic modification equations in isolation, we shall fix the
network inputs to be the same, and fix the architecture as well. The simplest architecture that
would already yield a significant difference between several models would be of a single cortical
neuron receiving input from a single source (single eye).

In the correlation of activity models (Sejnowski, 1977; Linsker, 1986; Kammen and Yuille, 1988;
Yuille et al., 1989; Miller et al., 1989) the input is defined in terms of the correlation of activity in
the presynaptic afferents, whereas in the BCM model the input is defined in terms of the presynaptic
activity. For reasons that will become clear, it is difficult to transform the correlation of activity
models to a presynaptic activity models; however, we can rewrite the BCM model as a correlation
of activity model.

To simplify notation and without loss of generality we shall assume that the input activity in
each ganglion cell has zero mean. First we show how the transformation from input activity to
correlation activity is done by expanding on footnote 15 of Miller et al. (1989). This will be done
in the simple case of a single cortical neuron with no interaction between LGN inputs coming from
the two eyes. Miller's rule has the following form:

aS(a, t)dt - AA(-a)[c(t) - cl]a,(a, t) - 7S(a, t) - c'A(-a), (5.1)

where a is the afferent location, A is the arbor function representing the number (or in the limit,
the density of) afferents coming from location a, aa(a,It) is the afferent activity at location a,
the subscript a represents an addition of threshold and saturation effects, and cl is a constant.
c(t) is the neuronal activity which in this simple case of no lateral interactions is given by c(t) =
EO S(O, t)a,()3, t) + c2 where c2 is some constant. -yS(a, t) + E'A(-a) are decay functions of the
synaptic weights. Substituting c(t) into 5.1, denoting c3 = c2 - ci and taking the average over the
input space (at a given afferent location) we obtain

dS(a,t) - ,A(-a){I S(,3,t)E(a,(j3,t)a,(a,i)) + c3E(ao(a,t))} - yS(a,t)- EA(-Q). (5.2)
dt

defUsing C(a,o) to rep-'sent the correlation of activity C(a,i3) = E(ao(a, t)a°(I,t)) we get

dS(a,, t)dt \ = A(-a){f S(1,t)C(a,fl) - cjE[ao(a,,t)]} - -yS(a,t) - E'A(-a), (5.3)

which is a simple case of equation (1) in Miller et al. (1989).
Analogous reform 'ation is done below for the BCM modification equation

din(a, t)dt -= \O(c(t), 0m)a(a, t), (5.4)

for the synaptic weight m (in Miller's notation this is S)" for simplicity we omit decay terms and
assume a uniform arbor function.

defUsing a simple form of the modification function, O(c, 0,,,) '= c(c - 0,,.) (Biencnstock et al.,
1982) substituting c(t) = • m(/3)a(13, t) and taking the average over the input space at a given
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afferent location we obtain

dm(a,t) _= E{a(a) -m()a(,8)m(-y)a(y)} - E{a(a) •-m(O)a(3)}O m . (5.5)
dt

Wherever it is clear we omit the dependency of a(a) on t (assuming it is a stationary process). Using
the same correlation function as defined above, and defining the third order correlation C(a, 0, -y)
of the input activity to be C(a,C0,7) = E[a(a)a($)a(-y)], yields

dmat) _- r 56
dmia t) = C\ (a, i3, -y)m(13)m(-y) - Om Zm(13)C(a, fl)}. (5.6)dt

Using a definition for the threshold 0.. = E[Za a(a)m(a)]2 (Intrator, 1990; Intrator and Cooper,
1992) and using the second order correlation function C, Om becomes 0, = C(-y, b)m(y)m(b).
Therefore, eq. (5.6) becomes

din a, t)dm ,t ) = \f e(a,O, -)M (0)7,n(-y)- QC t, )C(y, 6),m(O)m (7)m (6)}. (5.7)

A few important observations follow. The correlation based models use only the first and second
order statistical information 3 of the data, whereas BCM utilizes in addition the third order statistics
of the input activity. Therefore, without going into the details of the limiting behavior, this already
suggests that correlation based models are less sensitive to the input environment. Analysis shows
that in many cases the correlation of activity models find the principal components of the input
environment (Oja, 1982; Kohonen, 1984; Yuille et al., 1989; Miller et al., 1989; Sanger, 1989;
Granger et al., 1989). In the following section we discuss some properties of principal components
in information processing.

5.1.1 Comparison Based on the Information Extraction Properties

It now becomes relevant to ask what type of structure can be extracted from first and second
moments only, and what constitutes an interesting structure. The first question is quite old and its
answer is well known; First and second moments contain information about the principal compo-
nents of the input distribution, which are those directions that can minimize L2 error between the
original data and the reconstructed data based only on the first few leading components. Another
way to view principal components is to observe that they maximize the variance of the projected
distribution, namely the variance of the new random variable that is the projection of the inputs
onto the principal components.

Principal Components and Maximum Information Preservation

Networks that extract principal components from data are numerous, e.g., (Sejnowski, 1977; Oja,
1982; Linsker, 1986; Kammen and Yuille, 1988; Yuille et al., 1989; Miller et al., 1989; Sanger,
1989; Granger et al., 1989). Linsker presented the principles guiding synaptic modification in his
layered network and showed that the development rule causes a cell to develop so as to maximize

31n other words, the mean and covariance matrix of input activity
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the variance of its output activity, subject to the constraint on the total connection strength,
and on each synaptic value (Linsker, 1988). Linsker then describes the connection of this rule to
principal component analysis and to the principle of maximum information preservation taken from
information theory4 . This principle is optimal when the goal is to accurately reconstruct the input,
but is not optimal when the goal is classification. This is shown in the following simple example
(Figure 1, see also p. 212 Duda and Hart, 1973). Two clusters each belonging to a different class
are presented. The goal is to find a single dimensional projection that will capture the structure
information in the data. In Figure 1 (B) different clusters have different variance in either direction,
whereas in Figure 1 (A) the variance in both directions is equal. Clearly, the structure in the data
is conveyed in the x projection however, in the first example the variance is maximized in the y
projection. This projection also minimizes the mean squared error (MSE) and is therefore superior
from maximum information preservation. In the second example, due to the fact that the variance
of each cluster is equal in both directions, the optimal projection that capture the most structure
in the data, and preserves maximum information is the x projection.

Another way to view what principal components do to the data is by observing that they define
a new system of coordinates in which the covariance matrix is diagonal, namely, they eliminate the
second order correlation in the data i.e., correlation between the projections of the input data onto
any two principal components. It is important to note here that this procedure does not eliminate
higher order correlation in the data.

Finding Other Interesting Low-Dimensional Structure in Data

This problem has recently been discussed in the context of a statistical method called projection
pursuit (PP) (Huber, 1985, for review). This method seeks structure that is exhibited by (linear)
projections of the data, and is therefore relevant to neural network theory since the activity of
a neuron is believed to be a function of the projection of the inputs on the vector of synaptic
weights. Diaconis and Freedman (1984), have shown that for most high-dimensional clouds, most
low-dimensional projections are approximately normal. This finding suggests that important infor-
mation in the data is conveyed in those directions whose single dimensional projected distribution
is far from Gaussian. For example, some known measures of deviation from normality are skewness
and kurtosis which are functions of the first four moments of the distribution. These moments con-
tain information about statistical correlations up to fourth order. Intrator (1990) has shown that
a BCM neuron (given by equation 4.8) can find structure in the input distribution that exhibits
deviation from normality in the form of multi-modality in the projected distributions. This type of
deviation, which is measured by the first three moments of the distribution, is particularly useful
for finding clusters in high dimensional data (since clusters can not be found directly in the data
due to its sparsity) and is thus useful for classification or recognition tasks. Below, we give another
interpretation of this projection index in light of the previous discussion.

If we assume that the retina is performing decorrelation of the inputs (Atick and Redlich, 1992)
then the covariance matrix C(a, P) is diagonal (assuming that the inputs have zero mean) and so
for eigen values e(a), equation 5.7 becomes:

dm(a',t) A= { 7(a, ,-y)m(,3)m(-y) - e(a)m(Ca) e(-y)m 2 (-y)}. (5.8)
dt

'For review in this context see (Linsker, 1988).
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This suggests that the BCM synaptic modification equation is performing third order decorrelation
of the inputs subject to some penalty related to the size of the weights. When the second order
statistics of the input data is not decorrelated, then the modification equation can be thought of
trying to find some balance between third order correlation and second order correlation in the
data.

5.2 Comparison Based on Assumptions About the Input Environment

We summarize in Table 1 the different assumptions about the environment used by our group
and by Miller and colleagues to model classical visual deprivation experiments. What is apparent
from this comparison is the different emphasis given to between-eye and within-eye correlations in
activity. To quote Mastronarde: "Some of the strongest evidence on the importance of correlated
firing in development comes from cases where local correlations in activity are induced by sensory
stimulation; e.g. formation of binocular cells in visual cortex requires binocularly corresponding
visual input to the two eyes (Hubel and Wiesel, 1965). There has been growing interest in a more
restricted question: what is the role in development of the correlated activity that occurs in the
spontaneous discharge?" (Mastronarde, 1989). In our work we have chosen to focus on the influence
of activity induced by sensory stimulation on the development of visual cortex.

5.3 Comparison Based on Network Architecture

Although it is possible that network architecture plays an important role in comparison of vari-
ous ideas on visual cortical plasticity, in this chapter we have not done any analysis of different
architecture. This will be dealt with in subsequent work.

6 Concluding Remarks

We have given a short account of the BCM theory of synaptic plasticity - comparison with exper-
iments in visual cortex and possible cellular and molecular basis for the fundamental modification
equations. In addition we have shown that correlation based models and BCM differ in the type
of structure for which they search; Correlation models include first and second order statistics of
input correlations, while BCM modification also includes third order statistics.

Evidence exists for a principal component type preprocessing that may be taking place in
the retina; we suggest that BCM modification further preprocess the visual inputs by reducing
(extracting) third order statistical correlations. Extracting third order statistics from the visual
environment is a natural extension and complements the extraction of second order statistics that
may be done in the retina.

Statistical theory tells us that finite order statistics of the data is not sufficient to uniquely
characterize the data distribution. However, the addition of the third order moment adds impor-
tant feature such as skewness to the description of the distribution (Kendall and Stuart, 1977, for
review), and in this case, it adds information about multimodality (Intrator, 1992). The method
of principal components is sufficient for finding clusters in data when the variance of each cluster is
relatively constant in all directions, since then directions that maximize the variance also maximize
the information conveyed for the purpose of classification. When this is not the case, the example
(Figure 1) shows that the direction that maximizes the variance of the projection does not neces-
sarily carry information useful for separation of the two clusters although it does find the direction
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that will minimize the mean squared error between the reconstructed signal and the input; this is
dictated by the principle of maximum information preservation.

It is possible that the principle of maximum information preservation is useful in retinal process-
ing, in which an order of magnitude reduction in the number of cells occurs. We suggest that this
principle is not general enough to account for processing done in early visual cortex. and that such
statistical properties provide a convenient framework for comparison of various plasticity theories.
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Table Caption
Table 1 Summary of the different assumptions about the input environment between Clothiaux et al.

(1992) and Miller et al. (1989). (Normal Fearing (NR), Monocular Deprivation (MD), and Strabismus
(ST)).

Figure Captions
Figure 1 Principal components find useful structure in data (A) and fail when the variance of each cluster

is different in each direction (B).
Figure 2 The 0 function for two different em's.
Figure 3 Comparison of experimental observations with BCM 0 function for synaptic modification. Data

replotted from Dudek and Bear (1992).
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[ Clothiaux et al. (1991) Miller et al. (1989)

NR * Patterned input (correlated activity e Locally correlated input from both eyes.
within the eye with addition of noise) * No correlation between eyes.
from both eyes.
•Correlation between eyes.

MD * Patterned input from the open eye. e Same correlation structure as NR.
* Uncorrelated noise from the deprived eye. * Reduced activity to the deprived eye.

ST * Patterned input from each eye. 9 Locally correlated input from both eyes.
* No correlation between eyes. e Anti correlations between eyes.

Table 1:
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